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Abstract. The problem of the nuclear relaxation of nuclei of spinI = 3/2 in the presence of
strong quadrupole coupling is treated by means of the fictitious-spin (FS) formalism. Considering
the magnetic hyperfine field as the only source of spin–lattice relaxation, we employed the FS
method to obtain both the multiexponential decay law of the spin–lattice relaxation(T1) and
the so-calledT1-contribution to the transverse relaxation(T2). As an example we discuss the
determination of the spin–spin relaxation rate of the planar copper in the YBa2Cu3O6+x high-
temperature superconductor.

1. Introduction

Nuclei with spin larger thanI = 1/2 have electric quadrupole moments which interact
with the electric field gradient (EFG) at their position [1]. When the quadrupole coupling
is present the data reduction of the NMR results is far more complicated than for the
simple case of spinI = 1/2 or the case of zero EFG. The main effects of the quadrupole
coupling are to shift the unperturbed Zeeman energy levels(mZ), making them unequally
spaced, and to mix these states when the EFG is asymmetric. The consequences are a
complicated spectrum of several lines and also, in general, a multiexponential decay of the
spin–lattice relaxation. As is well known, the spin–lattice relaxation is given by a single-
exponential decay whenever a Boltzmann distribution of the level population is guaranteed
[2, 3]. However, once the quadrupole coupling promotes the inequality of the level spacing,
the mutual flips of the nuclear spins, which would maintain a Boltzmann distribution of the
level populations, are strongly suppressed, giving rise to a multiexponential decay of the
spin–lattice relaxation.

The problem of the spin–lattice relaxation of nuclei of spinI = 3/2 in the presence of
strong quadrupole coupling has already been treated by other authors in the past few years,
but using a theoretical approach different from the one that we propose here. Andrew and
Tunstall [4] have derived the multiexponential decay laws by solving the population master
equation. This same method was employed by Narath [5] and more recently by Horvatić
[6], who has also focused on the problem of the admixture of the Zeeman states by the
asymmetry of the quadrupole coupling. While in the simplest situation, that of negligibly
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mixed Zeeman states, the multiexponential decay of the longitudinal magnetization obeys a
well defined standard function, in the case studied by Horvatić [6] this fails and the decay
law must be found iteratively. Here we shall restrict ourselves to the simplest case of no
admixture of the Zeeman states. The interest in this case arises from the NMR investigation
of the copper nuclei(63,65Cu, I = 3/2) belonging to the CuO2 layers in the YBa2Cu3O6+x

(YBCO) high-temperature superconductor (HTSC) [7] and related materials. Although the
quadrupole frequency of the so-called planar copper is relatively large(νNQR = 31.45 MHz)
in the YBCO, the nearly tetragonal symmetry ensures the validity of the condition of small
admixture of the Zeeman states(η � 1, sohνNQRη � h̄γH0 when H0 is parallel to the
c-axes).

Our motivation in this article is not just to provide another derivation of the decay laws
of the spin–lattice relaxation, but mainly to show the usefulness of the fictitious-spin (FS)
[8] formalism in treating both the longitudinal and the transverse relaxation. In particular,
the transverse relaxation of the planar copper in the YBCO (and related) compounds has
recently attracted great interest. This interest came about after the pioneering work of
Penningtonet al [9], who have shown that the gaussian spin–spin relaxation time(T2g)

of the planar copper provides key information for the investigation of the staggered spin
susceptibility,χ ′(QAF, ω = 0). This interesting information, however, must be extracted
from the transverse relaxation, which also contains the spin–lattice contribution,T2R, in
addition to the spin–spin part. The spin–lattice contribution is also called theT1-contribution
to T2 and we will be concerned with how to calculate it exactly using the FS formalism.
Penningtonet al [9] have employed the Redfield theory (see [2, 10]) to deriveT2R; thus
the method presented here is an alternative.

Continuing this paper, in section 2, we briefly review the FS formalism, summarizing
the development given by Petit and Korb [8]. In section 3 we apply the tools of section
2 to derive the decay laws of the nuclear spin–lattice relaxation and theT1-contribution to
T2. In section 4, as an example, we discuss the determination of the gaussian component
of the nuclear spin–spin relaxation of the planar copper in YBCO. Section 5 contains the
concluding remarks.

2. The fictitious-spin formalism

Petit and Korb [8] (hereafter PK) have extensively developed the fictitious-spin formalism
to describe the nuclear relaxation of spins withI > 1/2. Their purpose was to generalize
the approach of Abragam [3], expressing the nuclear relaxation through a set of macroscopic
kinetic equations. Indeed, PK were able to show that it is always possible to obtain these
kinetic equations using a complete basis set of FS operators (in terms of which one can
expand the observables and the density matrix). Now we recapitulate the basics of the FS
method.

The FS operatorsIcdr are defined in table 1 of the original work of PK. Following their
notation the indicesr stand for the polarizationx, y, z andc < d ∈ {1, . . . , 2I +1} stand for
the eigenstatesm ∈ {I, I−1, . . . ,−I } of the Zeeman Hamiltonian. Therefore, there are more
FS operators than the 4I (I + 1) elements necessary to form a complete basis set (together
with the(2I +1)2 unit matrix) of the Hilbert space of a spinI . The problem is a redundancy
in the z-subspace which makes it necessary to restrict the choice of theIcdz operators. PK
solved this problem by imposing the orthogonality relation Tr{Icdz Iefz } = (1/2)δceδdf . So,
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given the FS basis set, any operatorQ can be expressed in this basis as

Q = a01 +
∑

r

∑
c<d

qcd
r Icdr (1)

where1 is the(2I + 1)2 unit matrix and

a0 = 1

2I + 1
Tr {Q} qcd

r = 2 Tr
{
QIcdr

}
. (2)

Consider now a nuclear spin system whose Hamiltonian isH = H0 + H1(t), whereH0

is the static part (which includes the Zeeman and quadrupole interactions) andH1(t) is the
time-dependent perturbation. The master equation for the density matrix(σ) [3] gives its
time evolution:

d

dt
σ∗(t) = − 1

h̄2

∫ ∞

0
dτ

[
H∗

1(t),
[
H∗

1(t − τ), σ∗(t) − σ0
]]

(3)

whereX∗ = eiH0t/h̄Xe−iH0t/h̄ denotes the interaction representation, the overbar stands for
the statistical average over the spin system, andσ0 is the equilibrium density matrix.

The expectation value of the observableQ can be computed from

d

dt
〈Q(t)〉∗ ≡ Tr

{
Q

d

dt
σ∗(t)

}
. (4)

The main goal of PK was to demonstrate that using the FS formalism it is always possible
to rewrite the equation above as a generalized kinetic equation

d

dt

〈
Q

〉∗ = −
[

1

Ti

]
(〈Q〉∗ − 〈Q〉0). (5)

In fact, decomposing (4) in the FS basis one obtains for each one of the 4I (I + 1)

independent FS components the kinetic equation

d

dt

〈
Icdr

〉∗ = −
∑

s

∑
e,f
e<f

1

T
cd,ef

i

{〈Iefs 〉∗ − 〈Iefs 〉0} (6)

with
1

T
cd,ef

i

= γ 2
∑

p,p′,q

J (q)(ωq
p) Tr{[A−q

p , [Aq
p, Icdr ]] Iefs } exp(i[ω−q

p′ − ωq
p]t).

In equation (6) [T −1
1 ] is the relaxation matrix,J (ω) is the spectral density, and the

indicesp and p′ stand for the different transition frequencies. The subscriptq stands for
the qth irreducible spin tensor component of the perturbing Hamiltonian. As usual, if we
restrict ourselves to the secular contribution, only the terms whereω

−q

p′ − ω
q
p = 0 are to be

taken into account [11].
The correlation timeτc characterizes the correlation function of the random process

brought about by the perturbing Hamiltonian, and the approach described here is valid as
long asτc � t, T1 and T2 [3, 11]. This perturbing Hamiltonian is usually written as the
scalar product of lattice(Fq) and spin(Aq) irreducible tensor components:

H1(t) = −γ h̄
∑

q

Fq(t)Aq (7)

where

Fq(t) = exp(iHet/h̄)F q exp(−iHet/h̄)
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is a lattice operator andHe is the electronic Hamiltonian. The corresponding correlation
function and spectral density are given, respectively, by

g(q,q ′)(τ ) = Tre{e−He/kT Fq(t)Fq ′+
(t + τ)}/Ze = Tre{e−He/kT Fq(t)F−q ′

(t + τ)}/Ze (8)

and
1

2
J (q,q ′)(ω) =

∫ ∞

0
dt g(q,q ′)(t)e−iωt + i

∫ ∞

0
dt g(q,q ′)(t) sinωt

whereZe = Tr {exp(−He/kT )} is the partition function and e−He/kT /Ze is the density matrix
of the electronic spin system.

Regarding the correlation function and the spectral density, few assumptions were made
in order to arrive to the kinetic equation (6). Firstly, it was assumed that theFq(t) are
statically independent, so thatg(q,−q ′)(τ ) = δq,−q ′g(q) (and the same holds for the spectral
density). In addition, the contribution from the imaginary part of the spectral density, which
gives rise to the small dynamical shift, was ignored [8].

The main advantage of the kinetic equations (5) and (6) over the spin-density method
is that one does not need to explicitly solve the master equation (3) of the spin-density
matrix. From the Redfield method a kinetic equation is also obtained, but the FS basis
is more convenient for the description of the observables associated with spin subspaces
in the case of nuclear spins withI > 1/2. Finally, to facilitate the calculation of the
double commutators present in equation (6), we present in table 1 the commutation rules
for the fictitious spin operators. A more general development of the kinetic equation (6),
including a superposition of different relaxation mechanisms, may be found in [8]. In the
application that follows we restricted consideration to one perturbing interaction of the first
rank (q = {−1, 0, 1}), namely the magnetic hyperfine field.

Table 1. Commutation rules for the fictitious-spin operators.

[I ij
+ , I kl

+ ] = δjkI
il
+ − δilI

kj
+ [I ij

z , I kl
z ] = 0 [I ij

− , I kl
− ] = δilI

kj
+ − δjkI

il
+

[I ij
+ , I kl

z ] = 1

2
I

ij
+ (δjk − δjl + δli − δik)

[I ij
− , I kl

z ] = 1

2
I

ij
− (δik − δli + δlj − δjk)

[I ij
+ , I kl

− ] = δjl (1 − δik)[2(ik)I ik
+ + 2(ki)I ki

+ ] − δki (1 − δlj )[2(lj)I
lj
+ + 2(jl)I

jl
+ ] + δlj δik(2I il

z )

2(ij) =
{

1 if i < j

0 if i > j

3. The nuclear relaxation of nuclei of spinI = 3/2

First, let us precisely state the case to be considered. A strong magnetic field is applied
parallel to theZ-axis of the EFG tensor, which is assumed to be axially symmetric so
that the asymmetryη = 0. Under these conditions the quadrupole coupling makes the
Zeeman states unequally spaced in energy, but the eigenstates remain unmixed because the
asymmetry is null. Note that in the case of pure NQR(H0 = 0) the axis of quantization is
Z and the eigenstates do not mix(η = 0), so the formalism below accounts for both the
NMR and the NQR cases.
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The nuclear relaxation process that we will analyse is dominated by the fluctuation of
the (anisotropic) magnetic hyperfine field (whose principal axes coincide with those of the
EFG tensor):

H1(t) = −γ h̄

[
A‖Sz(t)Iz + A⊥

2
(S+(t)I− + S−(t)I+)

]
(9)

whereI andS are nuclear and electronic spin operators, andAi are the principal values of
the magnetic hyperfine coupling tensor.

Decomposing the spin operators in the fictitious-spin basis according to the rules defined
by PK one obtains

Iz = 3I14
z + I23

z Ix,y =
√

3(I12
x,y + I34

x,y) + 2I23
x,y .

Then, transforming the Hamiltonian (9) to the interaction representation:

H∗
1(t) = −γ h̄

(
A||Sz(3I14

z + I23
z ) + A⊥S−

2
[
√

3(I12
+ eiω12t + I34

+ eiω34t ) + 2I23
+ eiω23t ]

+ A⊥S+
2

[
√

3(I12
− e−iω12t + I34

− e−iω34t ) + 2I23
− e−iω23t ]

)
. (10)

The longitudinal relaxation can now be calculated from the kinetic equation (6) together with
equation (10). It is worthwhile to note that the restriction to the secular contribution reduces
the number of terms to be calculated. Moreover, the commutators containing exclusively
operatorsIz, though they are not restricted, do not contribute because they are null. As a
consequence, only those terms with double commutators such as [Iif± , [Iif∓ , Icdz ]] have to be
calculated. After some calculation one arrives at the kinetic equation

d

dt

( 〈I12
z 〉∗

〈I23
z 〉∗

〈I34
z 〉∗

)
= W

( −6 4 0
3 −8 3
0 4 −6

)( 〈I12
z 〉∗ − 〈I12

z 〉0

〈I23
z 〉∗ − 〈I23

z 〉0

〈I34
z 〉∗ − 〈I34

z 〉0

)
(11)

whereW = γ 2|A⊥|2J (ω)/4 is the transition probability, which is a function of the electronic
spin spectral density,

J (ω) =
∫ ∞

−∞
S±(0)S∓(t) e−iωt

and

S±(0)S∓(t) = Tre{e−He/kT S±(0)S∓(t)}/Ze

is the correlation function of the electronic spin.
The system in equation (11) is easily solved and the solution is simply given by

1∗I(t) = A(expDt)A−1 1∗I(t = 0), where the matricesA, D and A−1 are given in
the appendix. However, as the solution is dependent both on how the nonequilibrium
magnetization is prepared and on how its recovery is observed, it is useful to analyse a
number of commonly encountered situations. A number of these experimental situations
are summarized in figure 1, and the corresponding solutions for the recovery law are listed
in table 2.

The recovery laws in table 2 are generally multiexponentials. Despite this, one observes
that in these functions there is always just one time constant to be determined, which is
defined as the spin–lattice relaxation rateT −1

1 = 2W . Actually, the possibility of defining
a single relaxation rate is an important consequence of the fact that the spectral densities
were considered constant in the range of frequency probed by the NMR and NQR (typically
up to 150 MHz). This approximation, called the extreme-narrowing condition, allowed us
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Figure 1. A schematic diagram for the deviations(1) from the equilibrium population
differences between levels 12, 23 and 34. The diagrams present the offset from the equilibrium
(dotted line) populations, withε = (N/4)(hν0/kBT ) and δ = (N/4)(hνQ/kBT ). In the table
there are the deviations1I ∗

cd ∝ am = [(Nm − Nm−1)prepared− (Nm − Nm−1)equilibrium] for
different initial conditions. An adiabatic inversion, denoted by a.i.(m, m′), means aπ -pulse on
the corresponding transition line which does not change the other level populations. In contrast,
a non-adiabatic saturation, denoted by n.a.s.(m, m′), means a saturation of this transition line
that alters the population of the other levels, keeping their differences equal to the equilibrium
values.

to put J (ω) = J (0) = J (ω12) = J (ω23) = J (ω34) so that we could extractW from the
relaxation matrix (11) as a common prefactor. Whether the extreme-narrowing condition
is fulfilled or not may be tested by measuringT −1

1 as a function of the frequency. If
T −1

1 = 2W determined from the recovery laws of table 2 does not depend on frequency,
then the extreme-narrowing condition holds. In the case of the YBCO, Borsaet al [12]
have reported a frequency dependence ofT −1

1 at the planar copper site aboveTc. However,
at Grenoble, we have recently investigated this problem [13] and our results disagree with
those of Borsaet al: in the normal state, the valuesT −1

1 for the planar copper measured at
different frequencies are coincident within the experimental error.

Now we turn to calculating the nuclear transverse relaxation using the same formalism
and conditions as we have considered for the spin–lattice relaxation. Puttingr = x in
equation (6) the calculation is straightforward. First one must note thatω

q=0
p = 0, so the
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Table 2. Recovery laws of the spin–lattice relaxation.X = 2Wt and by definitionT −1
1 = 2W .

a.i.(+1/2, −1/2) 1I ∗
23 ∝ 1

10e−X + 9
10e−6X

a.i.(±1/2, ±3/2) 1I ∗
12,34 ∝ 1

10e−X + 5
10e−3X + 4

10e−6X

n.a.s.(+1/2, −1/2) 1I ∗
23 ∝ 4

10e−X + 6
10e−6X

Sudden turn on ofH0 1I ∗
12,23,34 ∝ e−X

Inversion(±3/2, ±1/2) (NQR) 1I ∗
12,34 ∝ e−3X

restrictionω
−q

p′ + ω
q
p = 0 has no effect forq = 0 and, therefore, all of the contributions

involving [Icdz , [Iefz , Ikl
x ]] must be computed. On the other hand, forq = ±1 the restriction

ω
−q

p′ +ω
q
p = 0 imposesp = p′ and just the terms like [Ief± , [Ief∓ , I cd

x ]] have to be considered.
The calculation yields a system of linearly independent equations

d

dt

( 〈I12
x 〉∗

〈I23
x 〉∗

〈I34
x 〉∗

)
= −

( 1/T 12
2 0 0

0 1/T 23
2 0

0 0 1/T 34
2

)( 〈I12
x 〉∗ − 〈I12

x 〉0

〈I23
x 〉∗ − 〈I23

x 〉0

〈I34
x 〉∗ − 〈I34

x 〉0

)
(12)

where:

1/T 12
2 = 1/T 34

2 = γ 2J (ω)

[ |A‖|2
4

+ 5|A⊥|2
4

]
= (T1)

−1
⊥ + 2(T1)

−1
‖ (13)

and

1/T 23
2 = γ 2J (ω)

[ |A‖|2
4

+ 7|A⊥|2
4

]
= (T1)

−1
⊥ + 3(T1)

−1
‖ . (14)

In the passage from (12) to (13) and (14), two important assumptions were made.
First, the fluctuations were assumed to be isotropic so thatJ+−(ω) = 2J z(ω). Secondly,
the extreme-narrowing condition was adopted, allowing us to putJ (0) = J (ω). Thus,
equations (12)–(14) give theT1-contribution toT2, which is a single exponential and whose
time constantT2R is a combination of the spin–lattice relaxation rates measured withH0

parallel and perpenicular toZ (the c-axis). Furthermore, the relaxation rateT −1
2R when one

excites the central line is different to that when one excites a satellite line. The physical
origin of this contribution is the lifetime of the nuclear states, and it is important whenT1

is short.

4. The planar copper in YBa2Cu3O6+x

The NMR and NQR techniques have been extensively used in the study of the low-energy
excitations in the HTCS and related materials, mainly the YBa2Cu3O6+x compounds [7].
In particular, the planar copper site, denoted Cu(2), is of prime interest for these materials.
The temperature dependences of bothT1 and T2 at the Cu(2) site have been measured in
the normal state(T > Tc) in order to extract information on the generalized electronic spin
dynamical susceptibility,χ(q, ω) [14, 15]. These measurements require as basic knowledge
the recovery laws of the spin–lattice relaxation as well as the contribution ofT1 to T2. The
exactness of the recovery law of the longitudinal relaxation was discussed by Horvatić [6]
and here we will focus on the validity ofT2R in the transverse relaxation measurements

The transverse relaxation may be divided into two parts: the spin–spin contribution
and theT1-contribution. The first part arises from the nuclear spin–spin interactions (direct
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Figure 2. The echo envelope decay as function of(2τ)2 (τ is the time interval betweenπ/2–π
pulses) measured on the central line of the63Cu(2) in a single crystal of YBa1.92Sr0.07Cu3O6.92.
The• represent the raw data and� the data after the correction for the expectedT1-contrib-
ution e−t/T2R, where T −1

2R = (T1)
−1
⊥ + 3(T1)

−1
‖ = (7.9 ± 0.3) × 103 s−1, with (T1)

−1
‖ =

(1.28 ± 0.05) × 103 s−1 and (T1)
−1
⊥ = (4.0 ± 0.1) × 103 s−1 measured independently for

the same sample. The dashed line is the result of a fitting with a gaussian decay, from which
the spin–spin relaxation rateT −1

2g = (8.3 ± 0.3) ms−1 is extracted. Details of the experiment
and sample are given elsewhere [13].

dipolar and indirect) and gives rise to an undefined decay of the transverse magnetization,
except in few special cases [3]. On the other hand theT1-contribution is exponential, and its
time constantT2R may be calculated exactly through the FS method described above or using
the Redfield theory (see [2, 10]). Usually the significant physical information is contained
in the spin–spin relaxation, making it necessary to extract theT1-contribution from the raw
data. This is precisely the case for YBCO compounds, where the spin–spin relaxation is
dominated by a temperature-dependent indirect coupling, in which one is interested because
it is related to the static spin susceptibility,χ ′(q, ω ∼ 0). The aim of theT2-measurements
is then to extract the spin–spin relaxation time and relate it toχ ′(q, ω ∼ 0), which is the
physical information of interest [16].

An illustration of the procedure for extracting theT1-contribution from the transverse
relaxation is given in figure 2, where the echo envelope decay measured on the central line of
the63Cu(2) is semilogarithmically plotted against(2τ)2 (whereτ is the time interval between
the π/2–π pulses of the spin-echo experiment). Two procedures may be used to analyse
the data. In the first, we correct the raw data (closed circles) for the appropriate theoretical
T1-contribution, given by equation (14) asT −1

2R = (T1)
−1
⊥ +3(T1)

−1
‖ = (7.9±0.3)×103 s−1,

where(T1)
−1
‖ = (1.28± 0.05)× 103 s−1 and(T1)

−1
⊥ = (4.0± 0.1)× 103 s−1 were measured

independently for the same sample. The resulting spin–spin relaxation (open squares) is
very well fitted by a gaussian decay withT −1

2g = (8.3± 0.3) ms−1. Alternatively, if one fits
the transverse relaxation decay with a gaussian times an exponential decay

f (t) = A exp{−t/T2R} exp{−(t2/2T 2
2g)}

one obtainsT −1
2R = (8.2 ± 0.3) × 103 s−1 andT −1

2g = (8.5 ± 0.3) ms−1, in fair agreement
with the values obtained from the previous method. Therefore, the good agreement between
the two procedures described above confirms that the origin of the exponential component
of the transverse relaxation is due to the contribution ofT1 to T2. Moreover, this enables
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one to rely on the theoretical prediction forT −1
2R to derive both(T1)

−1
‖ and(T1)

−1
⊥ from the

transverse relaxation measurement, provided that the anisotropy ofT1 is known.

5. Conclusion

In this paper we have revised the fictitious spin formalism and applied it to solve the problem
of the nuclear relaxation of nuclei of spinI = 3/2 in the presence of strong and axially
symmetric quadrupole effects. We considered the fluctuations of the (anisotropic) magnetic
hyperfine field as the only source of spin–lattice relaxation. Though we have developed the
specific case ofI = 3/2, the extension of this formalism to any value ofI is straightforward.
The great advantage of the FS approach developed here is that it provides not only the spin–
lattice relaxation, as does the master population equation method, but also the transverse
relaxation. Both the recovery law of the nuclear spin–lattice relaxation and the contribution
of T1 to T2 were derived for a number of different conditions commonly encountered in
experiments. The practical application to the study of the spin–spin relaxation of the planar
copper site in the YBCO high-Tc compound was given as an example. In this example,
T −1

2R expected for the contribution ofT1 to T2 agrees fairly well with the relaxation rate
measured for the exponential component of the transverse relaxation.
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Appendix

A =
( 2 −1 1

−3 0 1
2 1 1

)
D =

( −12W 0 0
0 −6W 0
0 0 −2W

)

A−1 = 1

10

( 1 −2 1
−5 0 5
3 4 3

)
. (A1)

The recovery law of the spin–lattice relaxation is given by

1∗I(t) = A(expDt)A−1 1∗I (t = 0).

As an example consider the case of an adiabatic inversion of the population of the central
line (1/2 ↔ −1/2) (see figure 1). The recovery of the magnetization of the central line
will follow:

1∗I23
z (t) ∝ (0 1 0)A(expDt)A−1(1 −2 1) (A2)

1∗I23
z (t) ∝ 1

10{e−2Wt + 9e−12Wt }. (A3)
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